

APEX

Alliance for application Performance at EXtreme scale

Vendor Roadmap Presentation

Guidance

January, 2015

LA-UR-15-27422

What is APEX?

- Alliance for application Performance at EXtreme scale
 - As the acronym suggests our focus is on the <u>Application</u>
 - Performance has many dimensions
- APEX is a collaboration between ACES (ASC) and NERSC (ASCR)
 - ACES (Alliance for Computing at Extreme Scale) is a collaboration between Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL)
- The APEX collaboration is intended to result in the procurement of two platforms
 - NERSC/ASCR procurement of NERSC-9
 - ACES/ASC procurement of Crossroads (the 3rd Advanced Technology System)
 - ATS-1 = Trinity, ATS-2 = Sierra (CORAL), ATS-3 = Crossroads
- Both platforms will focus on meeting both mission needs and pursuing Advanced Technology concepts

High-level Design Philosophy

- Delivered application performance (as APEX suggests) is the primary driver in support of mission requirements
 - Peak FLOPS requirement will not appear in RFP
- APEX plans to purchase 2 platforms
 - Crossroads and NERSC-9
- Both target delivery in FY20
- Advanced technology development is assumed to be necessary to meet mission needs
 - Accelerate development of yet to be identified key technologies
 - 3rd round of NRE (Trinity/NERSC-8, CORAL, APEX)
- Considered pre-exascale platforms
 - MUST support path to exascale programming models
 - While supporting existing mission needs
 - Support MPI+OpenMP (threads)
 - Matured on Trinity/NERSC-8 and CORAL platforms
 - Additional support for other, yet to be identified, MPI+X programming models

Capability Improvement

- An increase in predictive capability requires increases in the fidelity of both geometric and physics models
 - This implies <u>usable</u> large platform memory capacity
- APEX must demonstrate a significant capability improvement
 - Improvement measured relative to Trinity (ATS-1) and Cori (NERSC-8)
 - Improvement as a function of performance (total time to solution), increased geometries, increased physics capabilities, power/energy efficiency, resilience and other factors
- Previous DOE investments assumed to be an integral part of production computing for APEX.
 - Trinity/NERSC-8 NRE projects: Burst Buffer and Advanced Power Management
 - Fast Forward and Design Forward

Facility, Power & Cooling

- Crossroads will be located in the Nicholas C. Metropolis center (SCC) at Los Alamos National Laboratory
- NERSC-9 will be located in the Computational Research and Theory (CRT) facility at Lawrence Berkeley National Laboratory
- Estimated facility power and footprint
 - Crossroads
 - 15MW
 - 8000 square feet
 - NERSC-9
 - Power and floor space likely not primary platform constraints
- Liquid cooled
 - Is our assumption correct?
 - Warm water or chilled ? Direct or indirect?

Guiding Questions guiding not exhaustive

- Basically we want to understand your roadmap(s) in the timeframe we anticipate taking delivery (FY20)
- Your roadmap presentations should NOT be limited to these guiding questions
- Tell us where and why our assumptions are wrong!
- We assume multi-level memory (storage) hierarchy
 - What will this look like?
 - Will it extend beyond the node?
 - Bandwidth and latency characteristics (between levels)?
 - Technologies?
 - Capacity?
 - Relative cost and energy trade-offs?
- What does a processor(s) look like on a node?
 - How many cores?
 - Heterogeneous or Homogeneous?
 - Core characteristics
 - NUMA characteristics?
 - Coherency?

Guiding Questions (continued)

- NIC
 - Integrated or discrete?
 - Injection bandwidth?
 - Message injection rate?
 - At what message size(s)?
 - Offload characteristics?
 - Access to memory?
- Interconnect
 - Topology?
 - Physical layer?
 - Bisection bandwidth?

7

Guiding Questions (continued)

- Software
 - Languages
 - Programming Environments
 - Programming Models
 - Profilers and Debuggers
 - Operating system(s)
 - Advanced Power Measurement and Control
 - RAS and/or System Management
 - Software to aid resiliency
 - Workload (and workflow) management

8

Guiding Questions (continued)

- What will the file system look like?
 - Integrated into memory hierarchy?
 - Is traditional application driven check point restart still required?
 - How can we optimize for analysis usage models?
- Support for task based programming model(s)?
- What are the advanced resilience mechanisms?
 - Hardware and/or software
- What is the optimal way to support emerging data intensive computing workloads on the same platform as 'traditional' HPC ones?
- Will you have early test platforms / proxies available that we can explore these issues with?
- What are your proposed NRE areas?
 - and required lead times for each
- How can APEX best influence your roadmap?

